67 research outputs found

    Centrosome and retroviruses: The dangerous liaisons

    Get PDF
    Centrosomes are the major microtubule organizing structures in vertebrate cells. They localize in close proximity to the nucleus for the duration of interphase and play major roles in numerous cell functions. Consequently, any deficiency in centrosome function or number may lead to genetic instability. Several viruses including retroviruses such as, Foamy Virus, HIV-1, JSRV, M-PMV and HTLV-1 have been shown to hamper centrosome functions for their own profit, but the outcomes are very different. Foamy viruses, HIV-1, JSRV, M-PMV and HTLV-1 use the cellular machinery to traffic towards the centrosome during early and/or late stages of the infection. In addition HIV-1 Vpr protein alters the cell-cycle regulation by hijacking centrosome functions. Enthrallingly, HTLV-1 Tax expression also targets the functions of the centrosome, and this event is correlated with centrosome amplification, aneuploidy and transformation

    Providing alternative measures for addressing adverse drug-drug interactions

    Get PDF
    First Online 30 March 2019Clinical Practice Guidelines (CPGs) are documents used in daily clinical practice that provide advice on how to best diagnose and treat diseases in the form of a list of clinical recommendations. When simultaneously applying multiple CPGs to patients, this can lead to complex multiple drug regimens (polypharmacy) with the potential for harmful combinations of drugs. The need to address these adverse drug events calls forth for systems capable of not only automatically represent the common potential conflicts or interactions that can happen when merging CPGs but also systems capable of providing conflict-free alternatives. This paper presents a solution that represents CPGs as Computer-Interpretable Guidelines (CIGs) and allows the automatic identification of drug conflicts and the provision of alternative measures to resolve these conflicts.This work has been supported by COMPETE: POCI-01-0145-FEDER-0070 43 and FCT – Fundação para a CiΓͺncia e Tecnologia within the Project Scope UID/CEC/ 00319/2013. The work of Tiago Oliveira was supported by JSPS KAKENHI Grant Number JP18K18115

    Kink far below the Fermi level reveals new electron-magnon scattering channel in Fe

    Full text link
    Many properties of real materials can be modeled using ab initio methods within a single-particle picture. However, for an accurate theoretical treatment of excited states, it is necessary to describe electron-electron correlations including interactions with bosons: phonons, plasmons, or magnons. In this work, by comparing spin- and momentum-resolved photoemission spectroscopy measurements to many-body calculations carried out with a newly developed first-principles method, we show that a kink in the electronic band dispersion of a ferromagnetic material can occur at much deeper binding energies than expected (E_b=1.5 eV). We demonstrate that the observed spectral signature reflects the formation of a many-body state that includes a photohole bound to a coherent superposition of renormalized spin-flip excitations. The existence of such a many-body state sheds new light on the physics of the electron-magnon interaction which is essential in fields such as spintronics and Fe-based superconductivity.Comment: 6 pages, 2 figure

    Ferrous to Ferric Transition in Fe-Phthalocyanine Driven by NO2 Exposure

    Get PDF
    Due to its unique magnetic properties offered by the open-shell electronic structure of the central metal ion, and for being an effective catalyst in a wide variety of reactions, iron phthalocyanine has drawn significant interest from the scientific community. Nevertheless, upon surface deposition, the magnetic properties of the molecular layer can be significantly affected by the coupling occurring at the interface, and the more reactive the surface, the stronger is the impact on the spin state. Here, we show that on Cu(100), indeed, the strong hybridization between the Fe d-states of FePc and the sp-band of the copper substrate modifies the charge distribution in the molecule, significantly influencing the magnetic properties of the iron ion. The FeII ion is stabilized in the low singlet spin state (S=0), leading to the complete quenching of the molecule magnetic moment. By exploiting the FePc/Cu(100) interface, we demonstrate that NO2 dissociation can be used to gradually change the magnetic properties of the iron ion, by trimming the gas dosage. For lower doses, the FePc film is decoupled from the copper substrate, restoring the gas phase triplet spin state (S=1). A higher dose induces the transition from ferrous to ferric phthalocyanine, in its intermediate spin state, with enhanced magnetic moment due to the interaction with the atomic ligands. Remarkably, in this way, three different spin configurations have been observed within the same metalorganic/metal interface by exposing it to different doses of NO2 at room temperature

    Goal-Driven Structured Argumentation for Patient Management in a Multimorbidity Setting

    Get PDF
    We use computational argumentation to both analyse and generate solutions for reasoning in multimorbidity about consistent recommendations, according to different patient-centric goals. Reasoning in this setting carries a complexity related to the multiple variables involved. These variables reflect the co-existing health conditions that should be considered when defining a proper therapy. However, current Clinical Decision Support Systems (CDSSs) are not equipped to deal with such a situation. They do not go beyond the straightforward application of the rules that build their knowledge base and simple interpretation of Computer-Interpretable Guidelines (CIGs). We provide a computational argumentation system equipped with goal-seeking mechanisms to combine independently generated recommendations, with the ability to resolve conflicts and generate explanations for its results. We also discuss its advantages over and relation to Multiple-criteria Decision-making (MCDM) in this particular setting.- (undefined

    Characterization of Reemerging Chikungunya Virus

    Get PDF
    An unprecedented epidemic of chikungunya virus (CHIKV) infection recently started in countries of the Indian Ocean area, causing an acute and painful syndrome with strong fever, asthenia, skin rash, polyarthritis, and lethal cases of encephalitis. The basis for chikungunya disease and the tropism of CHIKV remain unknown. Here, we describe the replication characteristics of recent clinical CHIKV strains. Human epithelial and endothelial cells, primary fibroblasts and, to a lesser extent, monocyte-derived macrophages, were susceptible to infection and allowed viral production. In contrast, CHIKV did not replicate in lymphoid and monocytoid cell lines, primary lymphocytes and monocytes, or monocyte-derived dendritic cells. CHIKV replication was cytopathic and associated with an induction of apoptosis in infected cells. Chloroquine, bafilomycin-A1, and short hairpin RNAs against dynamin-2 inhibited viral production, indicating that viral entry occurs through pH-dependent endocytosis. CHIKV was highly sensitive to the antiviral activity of type I and II interferons. These results provide a general insight into the interaction between CHIKV and its mammalian host

    Cyclin T1-Dependent Genes in Activated CD4+ T and Macrophage Cell Lines Appear Enriched in HIV-1 Co-Factors

    Get PDF
    HIV-1 is dependent upon cellular co-factors to mediate its replication cycle in CD4+ T cells and macrophages, the two major cell types infected by the virus in vivo. One critical co-factor is Cyclin T1, a subunit of a general RNA polymerase II elongation factor known as P-TEFb. Cyclin T1 is targeted directly by the viral Tat protein to activate proviral transcription. Cyclin T1 is up-regulated when resting CD4+ T cells are activated and during macrophage differentiation or activation, conditions that are also necessary for high levels of HIV-1 replication. Because Cyclin T1 is a subunit of a transcription factor, the up-regulation of Cyclin T1 in these cells results in the induction of cellular genes, some of which might be HIV-1 co-factors. Using shRNA depletions of Cyclin T1 and transcriptional profiling, we identified 54 cellular mRNAs that appear to be Cyclin T1-dependent for their induction in activated CD4+ T Jurkat T cells and during differentiation and activation of MM6 cells, a human monocytic cell line. The promoters for these Cyclin T1-dependent genes (CTDGs) are over-represented in two transcription factor binding sites, SREBP1 and ARP1. Notably, 10 of these CTDGs have been reported to be involved in HIV-1 replication, a significant over-representation of such genes when compared to randomly generated lists of 54 genes (p value<0.00021). The results of siRNA depletion and dominant-negative protein experiments with two CTDGs identified here, CDK11 and Casein kinase 1 gamma 1, suggest that these genes are involved either directly or indirectly in HIV-1 replication. It is likely that the 54 CTDGs identified here include novel HIV-1 co-factors. The presence of CTDGs in the protein space that was available for HIV-1 to sample during its evolution and acquisition of Tat function may provide an explanation for why CTDGs are enriched in viral co-factors

    A Unique Role for the Host ESCRT Proteins in Replication of Tomato bushy stunt virus

    Get PDF
    Plus-stranded RNA viruses replicate in infected cells by assembling viral replicase complexes consisting of viral- and host-coded proteins. Previous genome-wide screens with Tomato bushy stunt tombusvirus (TBSV) in a yeast model host revealed the involvement of seven ESCRT (endosomal sorting complexes required for transport) proteins in viral replication. In this paper, we show that the expression of dominant negative Vps23p, Vps24p, Snf7p, and Vps4p ESCRT factors inhibited virus replication in the plant host, suggesting that tombusviruses co-opt selected ESCRT proteins for the assembly of the viral replicase complex. We also show that TBSV p33 replication protein interacts with Vps23p ESCRT-I and Bro1p accessory ESCRT factors. The interaction with p33 leads to the recruitment of Vps23p to the peroxisomes, the sites of TBSV replication. The viral replicase showed reduced activity and the minus-stranded viral RNA in the replicase became more accessible to ribonuclease when derived from vps23Ξ” or vps24Ξ” yeast, suggesting that the protection of the viral RNA is compromised within the replicase complex assembled in the absence of ESCRT proteins. The recruitment of ESCRT proteins is needed for the precise assembly of the replicase complex, which might help the virus evade recognition by the host defense surveillance system and/or prevent viral RNA destruction by the gene silencing machinery
    • …
    corecore